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developing Maker education curriculum. Maker education curriculum serves for teaching activities of
Maker Education. Based on clear purposes, principles and multiple subjects, Eberly Center studies
curriculum practice, develops educational technology and assessment projects, explores practical problems
and refines research findings to develop Maker curriculum through the Simon Initiative. Generally
speaking, the development of Maker curriculum characterizes inheritance, research, integration, autonomy,
realism and practicality. With reference to Carnegie Mellon University, China may construct the platform of
Maker’s curriculum development, increase main bodies of Maker’s curriculum development, promote
Maker’s teachers professional development and extend the assessment types of Maker’s curriculum.
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Research on Dynamic Design of Blended Courses

SUN Zhong', SONG Jie', LUO Liming’
(1.College of Information Engineering, Capital Normal University, Beijing 100048;
2. Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048)

[Abstract] The Internet+ blended courses have developed rapidly with the combination of online
courses represented by MOOC and face—to—face courses in colleges and universities. Since face—to—face
teaching cannot meet the needs of individualized development of students and online teaching has lower
engagement and higher drop —off rate, this study puts forward the data—driven dynamic design concept.
Through two—year continuous teaching practice, it is found that the multiple regression can be used as the
prediction model for students” performance, and students” GPA, grades of pre—requisite courses, and online
learning engagement etc. are effective predicators. This study also proposes the principle of dynamic design
for concrete practice path, the learning methods of early diagnosis and remedy, the teaching strategies of
early socialization and strengthening interest for the purpose of realizing the dynamic design and effective
implementation of the blended courses.

[Keywords] Blended Learning; Learning Prediction; Dynamic Design; MOOC
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