中国教育类核心期刊 CSSCI来源期刊 RCCSE中国权威学术期刊

杂志文章

您的位置:首页 >文章目录 >2025年第6期>

    生成式人工智能赋能课堂教学的 形态层级与进阶路径

    Morphological Hierarchy and Developmental Pathways of Classroom Teaching Enabled by Generative Artificial Intelligence

    [浏览次数:625]

【作      者】:

卢 宇, 汤筱玙


【关 键 词 】:

生成式人工智能; 课堂教学; 教学智能体; 教育大模型; 人机协同


【栏      目】:

课程与教学


【中文摘要】:

生成式人工智能深度赋能课堂教学,既是技术演进的必然趋势,也是教育高质量发展的内在需求。文章系统阐释了不同赋能形态的内涵特征与内在关联,构建了生成式人工智能赋能课堂教学的形态层级框架并提供了典型示例。该框架包括四个逐级递进、相互关联的层级:“劳动替代与任务辅助”作为基础形态,聚焦基础性教学任务的工具赋能;“能力增强与边界拓展”作为初级形态,致力于提升教学效能与拓展教学边界,提供多样化服务赋能;“人机协同与创新激活”作为中级形态,强调人机深度协作与教学创新能力的激发,实现具有协同意识的智能主体赋能;“认知融通与思维塑造”作为高级形态,着眼于教学智慧的深度融合与高阶思维的培养,实现多元智能体共生的融合赋能。基于生成式人工智能赋能课堂教学的形态演进所呈现的层次性与纵深性特征,文章进一步提出实现层级进阶的系统化路径,包括政策指引与制度保障、素养提升与观念完善、价值重塑与技术突破。


【英文摘要】:

The innovative integration and deep empowerment of generative artificial intelligence (AI) with classroom teaching represent both an inevitable trend in technological evolution and an intrinsic requirement for the high-quality development of education. This study systematically elucidates the connotative characteristics and internal relations of different empowerment forms, constructs a morphological hierarchical framework for generative AI-enabled classroom teaching, and provides typical examples. The framework consists of four progressive and interrelated levels: "labour substitution and task assistance" as the basic form, focusing on tool-based empowerment for basic teaching tasks; "capability enhancement and boundary expansion" as the initial form, aiming to boost teaching efficiency and extend teaching boundaries, thus providing diversified service empowerment; "human-machine collaboration and innovation activation" as the intermediate form, emphasizing deep human-machine collaboration and stimulating teaching innovation capabilities, thereby achieving intelligent subject empowerment with a collaborative mindset; "cognitive integration and thinking cultivation" as the advanced form, focusing on the deep integration of teaching wisdom and the cultivation of higher-order thinking skills, thus realizing multi-agent symbiotic empowerment. Based on the hierarchical and in-depth characteristics of the evolution of generative AI-enabled classroom teaching forms, this study further proposes a systematic approach to achieving hierarchical development, including policy guidance and institutional guarantees, competence enhancement and conception refinement, value reshaping, and technological breakthroughs.

网站首页 | 联系我们 | 意见建议| 杂志订阅| 管理部登录

版权所有 © 电化教育研究 CopyRight ©e-EDUCATION RESEARCH 2011-2018 电话:0931-7971823 地址:西北师范大学《电化教育研究》杂志社